Scaling laws for bubbling bifurcations

نویسندگان

  • Cecilia González Tokman
  • Brian R. Hunt
چکیده

We establish rigorous scaling laws for the average bursting time for bubbling bifurcations of an invariant manifold, assuming the dynamics within the manifold to be uniformly hyperbolic. This type of global bifurcation appears in nearly synchronized systems, and is conjectured to be typical among those breaking the invariance of an asymptotically stable hyperbolic invariant manifold. We consider bubbling precipitated by generic bifurcations of a fixed point in both symmetric and non-symmetric systems with a codimension one invariant manifold, and discuss their extension to bifurcations of periodic points. We also discuss generalizations to invariant manifolds with higher codimension, and to systems with random noise.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Title of dissertation : Quantitative aspects of the stability of some dynamical systems Cecilia

Title of dissertation: Quantitative aspects of the stability of some dynamical systems Cecilia I. González Tokman, Doctor of Philosophy, 2010 Dissertation directed by: Professor Brian R. Hunt Department of Mathematics This thesis is concerned with the study of quantitative aspects of the stability of some dynamical systems that exhibit hyperbolic features. Results include scaling laws for bubbl...

متن کامل

Linear Scaling Laws in Bifurcations of Scalar Maps

für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution 4.0 International License. Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namen...

متن کامل

Dynamic bifurcations: hysteresis, scaling laws and feedback control

We review some properties of dynamical systems with slowly varying parameters, when a parameter is moved through a bifurcation point of the static system. Bifurcations with a single zero eigenvalue may create hysteresis cycles, whose area scales in a nontrivial way with the adiabatic parameter. Hopf bifurcations lead to the delayed appearance of oscillations. Feedback control theory motivates t...

متن کامل

The impact of scaled boundary conditions on wall shear stress computations in atherosclerotic human coronary bifurcations.

The aim of this study was to determine if reliable patient-specific wall shear stress (WSS) can be computed when diameter-based scaling laws are used to impose the boundary conditions for computational fluid dynamics. This study focused on mildly diseased human coronary bifurcations since they are predilection sites for atherosclerosis. Eight patients scheduled for percutaneous coronary interve...

متن کامل

Dynamical Phase Transitions In Driven Integrate-And-Fire Neurons

We explore the dynamics of an integrate-and-fire neuron with an oscillatory stimulus. The frustration due to the competition between the neuron’s natural firing period and that of the oscillatory rhythm, leads to a rich structure of asymptotic phase locking patterns and ordering dynamics. The phase transitions between these states can be classified as either tangent or discontinuous bifurcation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009